Sound Field Recording and Reproduction Using Small Number of Microphones and Loudspeakers

Shoichi Koyama

The University of Tokyo / Paris Diderot University / Institut Langevin

About me

Shoichi Koyama, Ph.D.

- 2007 B.E. and 2009 M.S. degrees from UTokyo
- 2009 2014: Nippon Telegraph and Telephone Corp.
- 2014: Ph.D. (Inf Sci&Tech) from UTokyo
- 2014 present: Assistant Prof. (Research Associate) at
 UTokyo
- 2016 present: Visiting researcher at Paris Diderot
 University (Paris7) / Institut Langevin

UTokyo and Institut Langevin

Real-time Sound Field Transmission System

- > Loudspeakers (for high freq.): 64, 6cm intervals
- Loudspeakers (for low freq.): 32, 12cm intervals
- Microphones: 64, 6cm intervals
- Array size: 3.84 m
- Sampling freq.: 48 kHz, Delay: 152 ms

Visualization of Reproduced Sound Field

- Source signal: Low-passed pulse (0 2.6kHz)
- Source: Loudspeaker, Position: (-1.0, -1.0, 0.0) m

Visualization of Reproduced Sound Field

- Source signal: Low-passed pulse (0 2.6kHz)
- Source: Loudspeaker, Position: (0.0, -1.0, 0.0) m, 2.0 m forward shift

[Koyama+ IEEE TASLP 2012]

Today's Topic

How to reduce microphones and loudspeakers in recording and reproduction?

- > Insufficient number of array elements: *spatial aliasing artifacts*
 - Low reproduction accuracy at high frequencies
 - Inaccurate frequency characteristics (coloration effect)

Today's Topic

How to reduce microphones and loudspeakers in recording and reproduction?

Improve reproduction accuracy using prior information

- Reduction of the number of microphones [Koyama+ ICASSP2014, 2015]
 - Improve reproduction accuracy within predefined near-field source area
- Reduction of the number of loudspeakers [Ueno+ ICASSP2017, HSCMA2017]
 - Improve reproduction accuracy within predefined listening area

REDUCTION OF THE NUMBER OF MICROPHONES

Conventional: WFR filtering method

Signal conversion based on plane-wave decomposition

Conventional: WFR filtering method

Spatial aliasing artifacts due to plane wave decomposition Significant error above spatial Nyquist freq of microphone array

Sound Field Decomposition in Recording

$$\frac{p(\mathbf{r},\omega)}{\text{Received}} = \sum_{n} b_n(\omega) \frac{\varphi_n(\mathbf{r},\omega)}{\text{Basis function}}$$

- ♦ Plane wave / harmonic decomposition suffers from spatial aliasing artifacts because many basis functions are used
- ♦ Observed signals should be represented by a few basis functions for accurate interpolation of sound field
- ♦ Appropriate basis function may be close to pressure distribution originating from near-field sound sources
- ♦ To obtain driving signals of loudspeakers, basis functions must be <u>elementary</u> <u>solutions of Helmholtz equation</u> (e.g. Green functions)

Sound field decomposition

Sound field decomposition into elementary solutions of Helmholtz equation is necessary

Generative model of sound field

[Koyama+ ICASSP 2014]

Sound field consisting of near-field source and far-field plane-wave components

Generative model of sound field

[Koyama+ ICASSP 2014]

Generative model of sound field

\succ Observe sound pressure distribution on plane Γ

higher reproduction accuracy above spatial Nyquist freq

A few elements of ${\bf X}$ has non-zero values under the assumption of spatially sparse source distribution

Sparse signal decomposition

Block diagram of signal conversion

Decomposition stage

– Group sparse decomposition of $\underline{\mathbf{Y}}$

Reconstruction stage

- \underline{x} and \underline{z} are respectively converted into driving signals
- \mathbf{d} is obtained as sum of two components

Simulation Experiment

- Proposed method (Proposed), method based on sparse circular harmonics decomposition (CH) WFR filtering method (WFR), and Sound Pressure Control method (SPC) were compared
- > 32 microphones (0.06 m intervals) and 48 loudspeakers (0.04 m intervals)
- $\succ \Omega$: Rectangular region of 2.4x2.4 m, Grid points: (0.01 m, 0.02 m) intervals
- Source directivity: unidirectional
- Source signal: single frequency sinewave

Simulation Experiment

Frequency vs. SDR

Source location: (-0.32, -0.84, 0.0) m

SDRRs above spatial Nyquist frequency were improved

Reproduced sound pressure distribution (4.0 kHz)

Source location: (-0.32, -0.84, 0.0) m

Frequency response of reproduced sound field

Frequency response at (0.0, 1.0, 0.0) m

Reproduced frequency response was improved

Experiments using real data

- Proposed method (Proposed) and WFR filtering method (WFR), were compared
- Same experimental setting as the previous one
- Reproduced region was simulated as free field
- Source signal: speech

Reproduced sound pressure distribution

Reduction of The Number of Microphones

- Conventional plane wave decomposition is suffered from spatial aliasing artifacts
- Sound field representation using near-field source and plane wave components
- Sound field decomposition based on spatial sparsity of near-field source components
- Group sparsity based on physical properties of sound field
- Experimental results indicated that reproduction accuracy above spatial Nyquist frequency can be improved

REDUCTION OF THE NUMBER OF LOUDSPEAKERS

Listening-area-informed sound field reproduction

Highly-accurate sound field reproduction exploiting prior information on listening area

Probability distribution on the listeners' position is given
 High reproduction accuracy within the listening area is achieved

Problem statement

 \succ Sound field synthesized by L discrete secondary sources in 2D

Transfer function $p_{\rm syn}(\mathbf{r}) = \mathbf{\underline{h}(\mathbf{r})}^{\mathsf{T}} \mathbf{\underline{d}} \quad \begin{vmatrix} \text{ranster function} \\ \mathbf{\underline{h}(\mathbf{r})} = [h(\mathbf{r}, \mathbf{r}_1), \cdots, h(\mathbf{r}, \mathbf{r}_L)] \end{vmatrix}$ ving signals $\underline{d(\mathbf{r})} = [d(\mathbf{r}_1), \cdots, d(\mathbf{r}_L)]$ **Driving signals**

Expectation minimization of pressure error

minimize $\int_{\mathbf{r}\in V} \frac{\rho(\mathbf{r})}{\mathbf{r}} \left| \mathbf{h}(\mathbf{r})^{\mathsf{T}} \mathbf{d} - p_{\mathrm{des}}(\mathbf{r}) \right|^{2} d\mathbf{r}$ Given desired pressure Prior distribution on the listeners' position inside listening area V_{\parallel}

Problem statement

 $\ge \rho(\mathbf{r})$ is a mixture of truncated Gaussian distributions [Ueno+ HSCMA 2017]

Harmonic Expansion of Objective Function

> Objective function

$$\mathcal{J} = \int_{\mathbf{r} \in V} \underline{\rho(\mathbf{r})} \left| \underline{\mathbf{h}(\mathbf{r})}^{\mathsf{T}} \underline{\mathbf{d}} - p_{\text{des}}(\mathbf{r}) \right|^2 d\mathbf{r}$$

Difficult to minimize analytically due to multiple integrals

Circular harmonic expansion

Basis functions: $\underline{\varphi_{m}(\mathbf{r})} = J_{m}(kr)e^{jm\phi}$ ($\mathbf{r} = (r, \phi)$: Polar coordinates) $\left[\begin{array}{c} \underline{\mathbf{h}(\mathbf{r})} \simeq \begin{bmatrix} c_{-M,1} & \cdots & c_{M,1} \\ \vdots & \ddots & \vdots \\ c_{-M,1} & \cdots & c_{M,L} \end{bmatrix} \begin{bmatrix} \varphi_{-M}(\mathbf{r}) \\ \vdots \\ \varphi_{M}(\mathbf{r}) \end{bmatrix} = \mathbf{C}^{\mathsf{T}}\underline{\varphi(\mathbf{r})}$ $p_{\mathrm{des}}(\mathbf{r}) \simeq \begin{bmatrix} b_{-M} & \cdots & b_{M} \end{bmatrix} \begin{bmatrix} \varphi_{-M}(\mathbf{r}) \\ \vdots \\ \varphi_{M}(\mathbf{r}) \end{bmatrix} = \mathbf{b}^{\mathsf{T}}\underline{\varphi(\mathbf{r})}$ October 24, 2017

Harmonic Expansion of Objective Function

> Objective function

$$\mathcal{J} = \int_{\mathbf{r}\in V} \underline{\rho(\mathbf{r})} \left| \underline{\mathbf{h}(\mathbf{r})}^{\mathsf{T}} \underline{\mathbf{d}} - p_{\text{des}}(\mathbf{r}) \right|^2 d\mathbf{r}$$

Approximation using circular harmonic expansion

$$\int \mathbf{\hat{h}(\mathbf{r})} \simeq \mathbf{C}^{\mathsf{T}} \boldsymbol{\varphi}(\mathbf{r})$$

$$p_{des}(\mathbf{r}) \simeq \mathbf{b}^{\mathsf{T}} \boldsymbol{\varphi}(\mathbf{r})$$

$$\mathcal{J} \simeq (\mathbf{C}\mathbf{d} - \mathbf{b})^{\mathsf{H}} \left\{ \int_{\mathbf{r} \in V} \rho(\mathbf{r}) \boldsymbol{\varphi}(\mathbf{r})^{*} \boldsymbol{\varphi}(\mathbf{r})^{\mathsf{T}} d\mathbf{r} \right\} (\mathbf{C}\mathbf{d} - \mathbf{b})$$

$$\mathbf{W}$$

Integrals including $ho({f r})\,$ and $oldsymbol{arphi}({f r})\,$ are only required to be calculated

Harmonic Expansion of Objective Function

 \succ Each element of $\underline{\mathbf{W}}$ can be analytically calculated as

$$w_{m,n} = \int_{\mathbf{r} \in V} \rho(\mathbf{r}) \varphi_m(\mathbf{r})^* \varphi_n(\mathbf{r}) d\mathbf{r}$$

$$(m,n) \text{ element} = \int_{\mathbf{r} \in V} J_m(kr) e^{-jm\phi} J_n(kr) e^{jn\phi} d\mathbf{r}$$

$$= \int_0^R J_m(kr) J_n(kr) r dr \int_0^{2\pi} e^{j(n-m)\phi} d\phi$$

$$= \delta_{m,n} \pi R^2 \left\{ J_m(kR)^2 - J_{m-1}(kR) J_{m+1}(kR) \right\}$$

$$\mathbf{W} \text{ is a diagonal matrix with positive value}$$

W can be analytically calculated for uniform distribution
 Similar results can be obtained for truncated Gaussian distribution

Optimal Driving Signals

> Objective function using circular harmonic expansion

$$\mathcal{J} \simeq \left(\mathbf{C}\underline{\mathbf{d}} - \mathbf{b}\right)^{\mathsf{H}} \left\{ \int_{\mathbf{r} \in V} \underline{\rho(\mathbf{r})} \boldsymbol{\varphi(\mathbf{r})}^{*} \boldsymbol{\varphi(\mathbf{r})}^{\mathsf{T}} d\mathbf{r} \right\} \left(\mathbf{C}\underline{\mathbf{d}} - \mathbf{b}\right)$$
$$\mathbf{W}$$

> Optimal driving signals

$$\hat{\underline{\mathbf{d}}} = \left(\mathbf{C}^{\mathsf{H}}\underline{\mathbf{W}}\mathbf{C} + \lambda\mathbf{I}\right)^{-1}\mathbf{C}^{\mathsf{H}}\underline{\mathbf{W}}\mathbf{b}$$

Objective function is simply minimized and optimal driving signals can be obtained

Relationship with mode-matching method

Proposed method

$$\hat{\mathbf{d}} = \left(\mathbf{C}^{\mathsf{H}} \mathbf{\underline{W}} \mathbf{C} + \lambda \mathbf{I}
ight)^{-1} \mathbf{C}^{\mathsf{H}} \mathbf{\underline{W}} \mathbf{b}$$

> Circular harmonics are optimally weighted based on prior information

 \succ Mode-matching method: least squares solution of $\, \mathbf{C} \mathbf{d} = \mathbf{b} \,$

$$\hat{\mathbf{d}} = \left(\mathbf{C}^{\mathsf{H}}\mathbf{C} + \lambda\mathbf{I}\right)^{-1}\mathbf{C}^{\mathsf{H}}\mathbf{k}$$

Circular harmonics have to be truncated at appropriate order
 Truncation at M = [kR] is empirically known to give high performance within circular region of radius R

Relationship with mode-matching method

Weight on circular harmonics when k = 36.9 rad/m and R = 0.4 m

Optimal weight on circular harmonics based on prior information

Extension to Multiple Listening Areas

> Objective function

Approximation using circular harmonic expansion

$$\mathcal{J} \simeq \sum_{q=1}^{Q} \left(\mathbf{C}^{(q)} \mathbf{d} - \mathbf{b}^{(q)} \right)^{\mathsf{H}} \mathbf{W}^{(q)} \left(\mathbf{C}^{(q)} \mathbf{d} - \mathbf{b}^{(q)} \right)$$

> Optimal driving signals

$$\hat{\mathbf{d}} = \left(\sum_{q=1}^{Q} \mathbf{C}^{(q)\mathsf{H}} \mathbf{W}^{(q)} \mathbf{C}^{(q)} + \lambda \mathbf{I}\right)^{-1} \sum_{q=1}^{Q} \mathbf{C}^{(q)\mathsf{H}} \mathbf{W}^{(q)} \mathbf{b}^{(q)}$$

Simulation Experiment

- Array geometry
 - Linear: 25 loudspeakers, 0.16 m intervals
 - Circular: 64 loudspeakers, 2.0 m radius
- Desired sound field: cylindrical wave
- Listening area: two circular areas
- > Compared method:
 - Proposed
 - MM: Mode-matching method

- CD: Continuous distribution method (WFS/HOA) [Spors+ 2008, Poletti 2005]
- CD w/ BL: CD with band limitation [Ahrens+ 2009, 2011]
- Evaluation: Signal-to-Distortion Ratio of Reproduction (SDRR) Original pressure distribution

$$SDRR = 10 \log_{10} \frac{\sum_{i} \sum_{j} \sum_{k} |\bar{p}_{org}(x_i, y_j, t_k)|^2}{\sum_{i} \sum_{j} \sum_{k} |\bar{p}_{org}(x_i, y_j, t_k) - \bar{p}_{rep}(x_i, y_j, t_k)|^2}$$

Reproduced pressure distribution

Pressure distribution (2 kHz, linear array)

Proposed (SDRR = **68.51** dB) **MM** (SDRR = **60.42** dB)

CD w/ BL (SDRR = **5.81** dB)

Error distribution (2 kHz, linear array)

Frequency vs. SDRR (linear array)

Pressure distribution (2 kHz, circular array)

Proposed (SDRR = **66.58** dB) **MM** (SDRR = **39.63** dB) -2 -2 -1 Sound pressure distribution <u>٤</u>0 >1 <u>3</u>0 2 2 -2 2 -2 0 1 x [m] -1 -1 2 0 x [m] **CD w/ BL** (SDRR = **17.79** dB) **CD** (SDRR = **0.65** dB) -2 -2 -1 <u></u> 5 1 <u>٤</u>0 >1 2 2 -2 -1 -2 -1 2 2 0 1 0 1 x [m] x [m]

0.5

0

-0.5

0.5

0

-0.5

-1

-1

Error distribution (2 kHz, circular array)

Frequency vs. SDRR (circular array)

Reduction of The Number of Loudspeakers

- Sound field reproduction exploiting prior information on listening area
- Objective function is formulated as expectation minimization of spatial squared error inside listening areas
- Optimal driving signals are obtained by circular harmonic expansion
- Optimal weighting of circular harmonics can be analytically calculated based on prior information
- Experimental results indicated that high reproduction accuracy can be achieved by using the proposed method

Conclusion

Reduction of microphones and loudspeakers in sound field recording and reproduction

- Improve reproduction accuracy exploiting prior information
- Near-field source area and source sparsity for reducing microphones
- Probability distribution on listeners' position for reducing loudspeakers
- These two methods can be combined

Thank you for your attention!

Related publications

- <u>S. Koyama</u>, *et al.* "Effect of multipole dictionary in sparse sound field decomposition for super-resolution in recording and reproduction," *Proc. ICSV*, 2017 (to appear).
- N. Murata, <u>S. Koyama</u>, et al. "Spatio-temopral sparse sound field decomposition considering acoustic source signal characteristics," *Proc. IEEE ICASSP*, 2017.
- N. Ueno, <u>S. Koyama</u>, and H. Saruwatari, "Listening-area-informed sound field reproduction based on circular harmonic expansion," *Proc. IEEE ICASSP*, 2017.
- N. Ueno, <u>S. Koyama</u>, and H. Saruwatari, "Listening-area-informed sound field reproduction with Gaussian prior based on circular harmonic expansion," *Proc. HSCMA*, 2017.
- <u>S. Koyama</u> and H. Saruwatari, "Sound field decomposition in reverberant environment using sparse and low-rank signal models," *Proc. IEEE ICASSP*, 2016.
- N. Murata, <u>S. Koyama</u>, *et al.* "Sparse sound field decomposition with multichannel extension of complex NMF," *Proc. IEEE ICASSP*, 2016.
- <u>S. Koyama</u>, *et al.* "Sparse sound field decomposition using group sparse Bayesian learning," *Proc. APSIPA ASC*, 2015.
- N. Murata, <u>S. Koyama</u>, *et al.* "Sparse sound field decomposition with parametric dictionary learning for super-resolution recording and reproduction," *Proc. IEEE CAMSAP*, 2015.
- <u>S. Koyama</u>, *et al.* "Structured sparse signal models and decomposition algorithm for superresolution in sound field recording and reproduction," *Proc. IEEE ICASSP*, 2015.
- <u>S. Koyama</u>, *et al.* "Sparse sound field representation in recording and reproduction for reducing spatial aliasing artifacts," *Proc. IEEE ICASSP*, 2014.