Sound Field Recording Using Distributed Microphones
Based On Harmonic Analysis of Infinite Order
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Spatial Sound Recording and Reproduction

[ How to capture and reproduce physically correct sound field? ]

Recording area Target area

Reproduced sound image

Virtual listening position
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Conventional: Boundary Integral Eq.
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representation
(Kirchhoff-Helmholtz eq.)

— Pressure and its gradient on
boundary are required to estimate

inside target region

» Simplified shape of target region

to estimate only by pressure
distribution (e.g. spherical shape)
— Pressure mics on boundary surface

— Rigid baffle / directional mics to
avoid forbidden freq problem

— No flexibility in array geometry @

— Large target region requires large
array size @



Today’s Topic

[ How to estimate and interpolate continuous sound field ]

from measurements of distributed microphones?

=) Sound Field Reconstruction
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Goal: Estimate continuous u(r, k) inside () by using
pressure measurements u(r,,, k) (m e {1,...,M})

» Visualization, reproduction by loudspeakers/headphones etc-:-
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Sound Field Reconstruction

> Target region does NOT include
any sources

— Interpolation with constraint of
homogeneous Helmholtz eq.

— Decomposition of captured sound field
into plane-wave or harmonic functions

— [Ueno+ IEEE SPL 2018, IWAENC 2018]

» Target region includes some
\\\ sources

& e, — ill-posed problem!

Q' ?Jj.u(r’k) — Some assumptions must be imposed
Y ¢ on source distribution
Ty — [Koyama+ JASA 2018, IEEE JSTSP 2019],

[Murata+ [EEE TSP 2018],

\\ [Takida+ IEEE SAM 2018, ICASSP 2019]
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Homogeneous Sound Field Reconstruction

Sound wave

» Sound field inside source-free region
m) u(r, k) satisfies homogeneous Helmholtz eq.

(V2 + EDu(r, k) =0
Unknown boundary condition on room surface
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Sound Field Decomposition

Decomposition into element solutions of Helmholtz eq.
m) Reconstruction with constraint of Helmholtz eq.

» Plane-wave function (Herglotz wave function) \\
o ’,.—~\~.____—~\.\\ “0..““‘

u(r) :/ W(n)ej“"’mdn o
nes?

> Spherical wave function

ur) =Y Y aly, (kr)Y(0, ¢)

v=0v=—u

> Equivalent source method (single layer potential)

u(r) = /r’eaD O ()G )dr

ejk”r_r/ ||2

Free-field Green’s func.: G(r|r’) = 47| a
T — T |2
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> Spherical wave function expansion w/ truncation
N 7 [Laborie+ 2003, Samarasinghe+ 2014]

u(r) > Y ak(r)gy (kr ) Y0, ¢)
v=0v=—p Expansion center

— Estimate expansion coefs by solving linear eq of coefs ot (r¢) and
measurement values u(r,,)

— Empirical truncation of expansion order @
— Setting of expansion center I'g is necessary @

» Spherical wave function expansion w/ infinite order

oo W [Ueno+ IEEE SPL 2018]
u(r) = > al(ro)ju (kr©@)Y (0@, ¢©)

v=0rv=—p

— Leading to simple solution &
— No more empirical setting for truncation and expansion center &
— (Spatial error estimation by introducing Bayesian formulation &)
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Harmonic Analysis of Infinite Orders

[Ueno+ IEEE SPL 2018]

> Spherical wave function expansion

> >J (ro)@l (r —10)

v=0 pu=—v

Pl (r —ro) = Vamg, (kr ) Y0, ¢©)
Spherical Bessel func x Spherical harmonic func

(Here,r —ro = (r(®), 9 40)))

> Representation by infinite vectors
u(r) = a(rg)  p(r — o)

— Coefficient vector: a(rg) € C=
— Basis-function vector:  (r —rg) € C*
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Harmonic Analysis of Infinite Orders

[Ueno+ [EEE SPL 2018]
» Measurement by m th mic at Iy, with directivity of ¢,, (8, @) is

represented as

Measurement noise

Sm = > >‘ C/’Tf’b*l/al; ) + Em/
r=0 MU=—VV \Expansion coef of Cm(ey ¢)

H : P
CmOL(I'm) + €m :Representation by infinite vectors

= c T (r,, —ro)a(ry) + €m

Translation matrix from rg to I'y,, [Martin 2006]

» Stacking \f measurements:s = [s1,...,sum]", €= [e1,...,€n]"
= E(rg) a(ry) + €
E(ro) = [(c{'T(r1 — o))", ..., (chyT(rar —r0))"]
= [T(I‘l — I‘O)Cl, ceey T(I‘M — I'O)CM]
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Harmonic Analysis of Infinite Orders

[Ueno+ IEEE SPL 2018]

» Expansion coef at Yg is estimated as
&(rg) = E(rg) (P + M) 's
NT—

() m,m = (E(ro)"E(ro))

= cHT(r,, — ro)T(rg — T )Cr

m,m’

= cH T (r,, — T )Con

=) Dependency on expansion center X'g is removed
> Expansion coef at arbitrary position r:

a(r) = 2(r) (W + \I) s

Expansion coef at arbitrary position can be estimated

independently of truncation and expansion center




Conventional Harmonic Analysis

[Laborie+ 2003, Samarasinghe+ 2014]
> Spherical wave function expansion w/ truncation

N v
u(r) ~ S: S: at(ro)pt(r —rg) :approx. by truncation

v=0pu=—v
> Linear eq of expansion coef and measurements

s=E(ro)a(ry) +e | @ro) e CHHY
c (C(N—l—l)QxM

_E(I‘o)
> Estimate of expansion coefat r
A = = = = —1
a(r) = T(r — ro)‘:.(ro) (E(ro)"E(ro) + A\I) s

)

|
Estimate of &(ro)

Setting of appropriate truncation order and

expansion center is necessary




Relation to kernel ridge regression

[Ueno+ IEEE SPL 2018, IWAENC 2018]
» Harmonic analysis of infinite orders for pressure
microphone case (ch, , = 6,,00,,0)

a(r) = o(r —ro) "E(re) (¥ + A\I) " 's

Jo(kllry —raf]) - Jo(klrs —rarl))

Jo(klrar —rall) -+ Jo(klrar — ral])

Correspond to kernel ridge regression with kernel function

of Oth-order spherical Bessel function




> Reconstruction of plane waves in 2D
sound field using distributed
circular arrays

— 9circular arrays are randomly placed inside
circular region (1.5 m radius)

— T equiangularly-spaced mics for each
circular array (0.2 m radius)

— Monotonic plane wave
— Gaussian noise of SNR 20 dB

» Performance comparison
— Proposed
— Truncation [Laborie+ 2003]
- HOM [Samarasinghe+ 2014]

Circular mic array
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Results at 650 Hz

Proposed Truncation ry = (0.0,0.0)

Truncation ro = (1.5,0.0)

Pressure distribution
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Results at 650 Hz

Proposed
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Frequency vs. SDR

> Average SDR for 16 array geometries and 64 plane-wave angles

—— Estimate
—O— Proposed
—% — Truncation: r; = (0.0,0.0) m

m — Il
0 N | A~ Truncation: ro = (1.5,0.0) 1
2 | 7 S Bgag
< 10 o = W .
% 0Fr EL%AA X
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Signal-to-distortion ratio (SDR):

True pressure

/2

e Ju(r,w)|?

SDR(w) = 101logqq T Ta(r
Q
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Conclusion

» Sound field reconstruction using distributed mics
— Homogeneous and inhomogeneous sound fields

— Decomposition into element solutions of Helmholtz eq.
— Spherical wave function expansion of infinite orders

— Expansion coef estimation at arbitrary position
independently of truncation order and expansion center

— Spatial error estimation by using posterior covariance
— Numerical experiments in 2D

« High reconstruction accuracy at high fregs

« Good fit to spatial error estimation

Thank you for your attention!
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